Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures.
نویسندگان
چکیده
DNA origami is a novel self-assembly technique allowing one to form various two-dimensional shapes and position matter with nanometer accuracy. We use DNA origami templates to engineer surface-enhanced Raman scattering substrates. Specifically, gold nanoparticles were selectively placed on the corners of rectangular origami and subsequently enlarged via solution-based metal deposition. The resulting assemblies exhibit "hot spots" of enhanced electromagnetic field between the nanoparticles. We observed a significant Raman signal enhancement from molecules covalently attached to the assemblies, as compared to control nanoparticle samples that lack interparticle hot spots. Furthermore, Raman molecules are used to map out the hot spots' distribution, as they are burned when experiencing a threshold electric field. Our method opens up the prospects of using DNA origami to rationally engineer and assemble plasmonic structures for molecular spectroscopy.
منابع مشابه
DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering.
Plasmonic sensors are extremely promising candidates for label-free single-molecule analysis but require exquisite control over the physical arrangement of metallic nanostructures. Here we employ self-assembly based on the DNA origami technique for accurate positioning of individual gold nanoparticles. Our innovative design leads to strong plasmonic coupling between two 40 nm gold nanoparticles...
متن کاملDNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity.
DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intens...
متن کاملSpectral tuning of localised surface plasmon-polariton resonance in metallic nano-crescents.
The utilisation of plasmonic effects in metallic nanostructures is gaining importance for applications in molecular sensing. Of special interest is the local field enhancement effect, which enables surface-enhanced Raman scattering and significantly boosts the sensitivity of the Raman technique. For in vivo biological research, the ability to excite the resonance of localised surface plasmon-po...
متن کاملPlasmonic nanostructures through DNA-assisted lithography
Programmable self-assembly of nucleic acids enables the fabrication of custom, precise objects with nanoscale dimensions. These structures can be further harnessed as templates to build novel materials such as metallic nanostructures, which are widely used and explored because of their unique optical properties and their potency to serve as components of novel metamaterials. However, approaches...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 14 4 شماره
صفحات -
تاریخ انتشار 2014